

Contents lists available at ScienceDirect

Journal of Fluorine Chemistry

journal homepage: www.elsevier.com/locate/fluor

Experimental and chemical kinetic study of the pyrolysis of trifluoroethane and the reaction of trifluoromethane with methane

Wenfeng Han^a, Eric M. Kennedy^{a,*}, Sazal K. Kundu^a, John C. Mackie^a, Adesoji A. Adesina^b, Bogdan Z. Dlugogorski^a

^a Process Safety and Environment Protection Research Group, School of Engineering, The University of Newcastle, Callaghan, NSW 2308, Australia ^b Reactor Engineering and Technology Group, School of Chemical Sciences and Engineering, University of New South Wales, Sydney, NSW 2052, Australia

ARTICLE INFO

Article history: Received 11 February 2010 Received in revised form 15 March 2010 Accepted 19 March 2010 Available online 27 March 2010

Keywords: HFC 23 CHF₂ Greenhouse gas Vinvlidene fluoride Hydrofluorocarbon Kinetic modelling

ABSTRACT

A detailed reaction mechanism is developed and used to model experimental data on the pyrolysis of CHF₃ and the non-oxidative gas-phase reaction of CHF₃ with CH₄ in an alumina tube reactor at temperatures between 873 and 1173 K and at atmospheric pressure. It was found that CHF3 can be converted into C_2F_4 during pyrolysis and $CH_2=CF_2$ via reaction with CH_4 . Other products generated include C₃F₆, CH₂F₂, C₂H₃F, C₂HF₃, C₂H₆, C₂H₂ and CHF₂CHF₂. The rate of CHF₃ decomposition can be expressed as 5.2×10^{13} [s⁻¹] e^{-295[k] mol⁻¹]/R^T. During the pyrolysis of CHF₃ and in the reaction of CHF₃} with CH₄, the initial steps in the reaction involve the decomposition of CHF₃ and subsequent formation of CF₂ difluorocarbene radical and HF. It is proposed that CH₄ is activated by a series of chain reactions, initiated by H radicals. The NIST HFC and GRI-Mech mechanisms, with minor modifications, are able to obtain satisfactory agreement between modelling results and experimental data. With these modelling analyses, the reactions leading to the formation of major and minor products are fully elucidated.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Global production and use of chlorofluorocarbons (CFCs) and halons has decreased significantly as a result of the phase out schedules of the 1987 Montreal Protocol and its subsequent amendments and adjustments [1]. The consumption and emission of hydrofluorocarbons (HFCs) are projected to increase substantially in the coming decades in response to regulation and replacement of ozone depleting gases under the Montreal Protocol [2].

Trifluoromethane (CHF₃, HFC-23, fluoroform, FE-13, R23) is an unintentional by-product generated during the manufacture of CHClF₂(HCFC-22), and has limited application as a refrigerant or as a raw material for other products. It has a global warming potential 11,700 times greater than carbon dioxide and an atmospheric lifetime of 264 years. It is reported that the concentration of CHF₃ is steadily increasing in the atmosphere since at least 1978 at a present rate of increase of 5% per year [3].

Thus, the development of suitable methods for the treatment of CHF₃ is of great practical significance. However, limited research has focused on the development of treatment processes specifically for CHF₃, especially in comparison with the intensive research on technologies for destruction of halons or CFCs. One method, thermal oxidation, is a demonstrated technology for the destruction of CHF₃

as outlined in United Nations Framework Convention on Climate Change (UNFCCC) [4]. In this process, steam, O₂ and natural gas are used as reactants or fuels for the decomposition of CHF3 at temperatures as high as 1473 K. It is also reported that phosphates and ZrO₂–SO₄ are active and stable catalysts for the destruction of CHF_3 in the presence of O_2 and steam at relatively low temperatures [5,6]. One of the problems with oxidation is that the fluorine has to be removed as HF from the exhaust gas stream and then recycled or disposed of as a fluoride salt. More recently, Moon et al. investigated the pyrolysis of a mixture of CHF₃ and tetrafluoroethylene (TFE) as a potential route for the production of hexafluoropropene (C_3F_6) and found that the addition of CHF₃ can significantly increase the yield of C_3F_6 compared to the pyrolysis of TFE alone [7].

In a previous work, we reported that CHF₃ can be converted to vinyl difluoride (VDF, $CH_2 = CF_2$), a highly valuable feedstock, through reaction with CH₄, although the conversion and yield of target product were relatively low [8,9]. VDF is widely used as a fluoroelastomer which is a key monomer for the synthesis of a variety of products, most notably poly-(vinylidene fluoride) (PVDF), Viton (produced by Dupont Corporation), KEL-F (produced by 3M) and Aflas (produced by Asahi Glass Co. Ltd.). Components fabricated from fluoroelastomers enhance reliability, safety, and environmental friendliness in such areas as automotive and air transportation, the chemical processing industries, and in power generation [10]. A wide range of fluoroelastomer products have been developed to meet performance requirements in many

Corresponding author. Tel.: +61 2 4985 4422; fax: +61 2 4921 6893. E-mail address: eric.kennedy@newcastle.edu.au (E.M. Kennedy).

^{0022-1139/\$ -} see front matter © 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.jfluchem.2010.03.012

hostile environments, and to attain fabrication characteristics comparable to other elastomers. More recently, VDF was found to be an excellent source for the preparation of paints for high performance external architectural coatings [11].

The motivation of this study is to compare the thermal decomposition of CHF_3 alone and in the presence of CH_4 . The conversion approach adopted in this work is distinctly different to conventional destruction processes, as we aim not to destroy fluoroform but rather to transform it to a useful product. Through the combination of experimental work and kinetic modelling simulation presented in this manuscript, the elementary reactions dominating CHF_3 decomposition, CH_4 activation and the formation of products can be fully elucidated.

2. Experimental

The pyrolysis of CHF₃ and reaction of CHF₃ with CH₄ was carried out in a tubular alumina reactor with an inner diameter of 7.0 mm. This experimental facility has been described in detail elsewhere [12,13]. Briefly, the apparatus consists of a tubular high purity (99.99%) alumina reactor. Carbon containing products were identified by a GC/MS (Shimadzu QP5000) equipped with an AT-Q column, and quantified with a micro-GC (Varian CP-2003) equipped with molecular sieve 5A and PoraPLOT Q columns. Relative molar response (RMR) factors of hydrocarbons and halogenated compounds for TCD detection were experimentally obtained from standard gas mixtures where possible. The RMR of species where standard gas mixture were not available were estimated from published correlations [14]. HF formed during the reaction was trapped with 0.1 M NaOH solution, and concentrations were determined by an ion chromatograph (IC) (Dionex-100) equipped with an IonPAS14A column (4 mm \times 250 mm).

The gases and solid reactants used in this study include CHF_3 (>98%, Coregases), CH_4 (99.99%, Linde) and AIF_3 (Sigma, >99%). In reactions which involved AIF_3 , 0.2 g aluminium fluoride was charged into the uniform zone of the reactor, and held in place by alumina chips (99.99%). Prior to reaction, aluminium fluoride was dried in situ in a nitrogen atmosphere (99.999%, Linde) for 2 h at 673 K and 1.5 h at 1073 K. Feed gases, diluted in nitrogen (99.999%, Linde), were introduced to the reaction zone.

3. Chemical kinetic modelling

The pyrolysis of CHF₃ and reaction of CHF₃ with CH₄ have been modelled using the commercial software package Cosilab [15]. During simulations, the steady state material balance for each species was performed. As all experiments were conducted under essentially isothermal conditions, energy balances were not undertaken. Successive grids tolerance for species profiles were set to 0.001(GRAD parameter) for species concentration and to 0.01 for the concentration gradients (CURV parameter). The final grids contained 150 mesh points. The kinetic mechanism and thermodynamic database used for reaction of fluorinated species was the NIST HFC mechanism [16] with oxygen chemistry deleted since there is no oxygen in the reacting systems. Gas Research Institute GRI-Mech [17] was used for the pyrolysis of CH₄, again with oxygen-containing species removed. For reaction of CHF₃ with CH₄, NIST HFC mechanism and GRI-Mech were combined and called GRI-NIST mechanism in this study.

Generally, a reasonable agreement of predictions of NIST HFC, GRI-Mech and GRI-NIST mechanisms for CHF_3 pyrolysis, CH_4 pyrolysis and reaction of CHF_3 with CH_4 with experimental data was obtained. However, deviations between experimental data and modelling predictions were found in some cases. Modifications to the mechanisms are suggested, and discussed.

4. Results and discussion

4.1. Thermal pyrolysis of CHF₃

In order to investigate the pyrolysis of CHF_3 , the conversion of CHF_3 at temperatures from 973 to 1073 K and at 1.01 bar versus residence time was studied. Under these conditions, the conversion level of CHF_3 in a 10% CHF_3 -90% N_2 pyrolysis mixture is generally below 10%. Hence, reaction rate of this diluted mixture can be approximated as

$$-r_{\rm A} = kC_{\rm A}^n \tag{1}$$

which integrates to

$$\ln\frac{1}{1-X} = kt \tag{2}$$

for a first-order (n = 1) mechanism, or

$$\frac{X}{1-X} = C_{Ao}kt \tag{3}$$

for a second-order (n = 2) mechanism.

Where k is the reaction rate constant $((mol cm^{-3})^{1-n} s^{-1})$, C_A is the concentration of CHF₃ (mol cm⁻³), r_A is the rate of the reaction (mol cm⁻³ s⁻¹), X is the conversion of CHF₃ and t reaction time.

We evaluate the pyrolysis kinetics of CHF_3 , assuming ideal plugflow conditions and a constant density system. The first-order and second-order equations were used to fit the experimental data and first-order assumption best matches the experimental data, as shown in Fig. 1. The apparent rate constants for CHF_3 decomposition in the temperature range from 973 to 1073 K, based on a leastsquares fitting of the experimental rate constants with an Arrhenius expression is shown in Fig. 1. The rate constant expression for the first-order reaction is given by;

$$k = 5.2 \times 10^{13} \,[\mathrm{s}^{-1}] \,\mathrm{e}^{-295 \pm 46 \,[\mathrm{kJ} \,\mathrm{mol}^{-1}]/RT} \tag{4}$$

The pyrolysis of CHF₃ was first studied using shockwave techniques in the temperature range of 1200–1600 K [18,19]. Since then, various results have been reported based on shock wave experiments [20–22] or RRKM theoretical calculations [23]. These derived rate expressions are summarized in Table 1, along with the pressures and temperatures under which the data were obtained. It is generally agreed that the initial step in the decomposition of CHF₃ is the dehydrofluorination and formation of CF₂ species. We will discuss the reactivity of singlet and triplet states of CF₂ in more detailed in Section 4.2.2.

As shown in Table 1, the values of A and E_a obtained from our experimental data are close to the results of Placzek et al.'s RRKM calculation [23] and Politanskii et al.'s thermal pyrolysis experiments [24]. However, these rate constants are significantly lower than those reported by Tschuikow-Roux et al. [18,19]. Biordi et al. [25] studied the flame structure of bromotrifluoromethaneinhibited methane flames and found that the rate expressions given by Tschuikow-Roux et al. were too large to be consistent with low-pressure flame data. Using similar experimental techniques, an even lower activation energy for CHF₃ decomposition was suggested by Modica et al. behind incident and reflected shock waves over a temperature range from 1600 to 2200 K [20]. One possible reason for this discrepancy, as acknowledged by Tschuikow-Roux et al. [18], is the difficulty to appreciably vary the reaction dwell time while maintaining constant reaction temperature and pressure conditions in the single-pulse shock tube. Another reason for the discrepancy is that the decomposition of CHF₃ may be pressure-dependent and lie in the fall-off region near the second-order limit [19].

Fig. 1. (a) Apparent 1st order behavior for the pyrolysis of CHF_3 over the temperature range 973–1053 K. *X* represents fractional conversion of CHF_3 . (b) Arrhenius plot for first-order reaction rate constant for the pyrolysis of CHF_3 .

At pressures between 0.29 and 28.5 bar, Modica et al. found that the decomposition reaction was first order in CHF_3 concentration [20]. For the lowest pressure (0.29 bar), the reaction could also be interpreted by a second-order mechanism. Unfortunately, the calculated results did not reproduce the observed pressure dependence of the rates for the decomposition of fluoroform [23].

To explain the second-order mechanism, the following reactions were suggested [19]:

$$\mathsf{CHF}_3 + \mathsf{M} \rightleftharpoons \mathsf{M} + \mathsf{CHF}_3^* \tag{R1}$$

$$CHF_3^* \rightarrow CF_2 + HF$$
 (R2)

As C_2F_4 was observed as the major product in their experiments, Tschuikow-Roux et al. suggested that the vibrationally excited $C_2F_5H^*$ disproportionates rapidly into C_2F_4 plus HF. However, we suggest that reactions (R3a) and (R3b) play a relatively minor role under our experimental conditions, as there does not appear to be any reported observations of CF_2 insertion into CHF₃, and no evidence was found for CF_2 inserting into C–H of CH₄ or C_2H_4 over the temperature range of 295–873 K [26]. According to our quantum chemical calculations, it is found that CF_2 can insert into C–H of CH₄ with an activation energy as high as 163 kJ mol⁻¹. The exponential factor was estimated to be only 1.5×10^{11} cm³ mol⁻¹ s⁻¹. As argued in the reference [21], if reaction (R3a) is responsible for the consumption of CHF₃, we would anticipate the formation of CF₄, CF₂H₂, C₂F₆, C₂F₄H₂ and C₂F₅H, as a result of the following reactions:

$$CHF_3 + CF_2 \rightarrow CF_3 + CHF_2 \tag{R4}$$

$$CHF_3 + CF_3 \rightarrow CF_4 + CHF_2 \tag{R5}$$

$$CHF_3 + CHF_2 \rightarrow CF_3 + CH_2F_2 \tag{R6}$$

$$CF_3 + CF_3 \rightarrow C_2F_6 \tag{R7}$$

$$CHF_2 + CHF_2 \rightarrow C_2H_2F_4 \tag{R8}$$

$$CHF_2 + CF_3 \rightarrow C_2F_5H + M \tag{R9}$$

Furthermore, thermal decomposition of CHF₃ can be simulated very well when reaction (R3) is excluded [7,8,21]. Further investigations were undertaken to elucidate the mechanism of CHF₃ pyrolysis reaction and to estimate their associated kinetics parameters.

A feed mixture of N_2 and CHF₃, in which CHF₃ was approximately 10% by volume, was investigated at temperature range of 873–1173 K and at atmospheric pressure. The residence time was maintained at around 0.5 s by adjusting the volume of the reaction zone. The conversion of CHF₃ and the rate of product formation as a function of temperature are shown in Fig. 2. It is seen that CHF₃ pyrolysis commences around at 973 K at residence time of 0.5 s, and its conversion increases with temperature. At a temperature of 1173 K, 80% conversion of CHF₃ was achieved.

The products of CHF₃ pyrolysis detected by GC–MS analysis include C_2F_4 , C_3F_6 and trace amounts of C_2HF_3 at higher temperatures. At temperatures above 1073 K, trace amounts of carbonaceous material were formed on the inner surface of the reactor. As a consequence, the carbon balance drops from 98% at 973 K to around 80% at 1173 K. Fig. 2(b) and (c) shows the formation rate of major products as a function of temperature. The production of C_2F_4 increases with temperature until 1133 K, at this temperature, a maximum formation rate is achieved before it decreases at temperatures higher than 1133 K. However, C_3F_6 formation commences at 1073 K and increases monotonically with

Ta	ble	1	

Comparison of kinetic data of CHF₃ decomposition obtained in this study with references^a.

<i>T</i> (K)	Pressure (Pa)	$A (s^{-1} \text{ or } cm^3 mol^{-1} s^{-1})$	n	E (kJ mol ⁻¹)	Reaction order	Ref.
1500-2000	$4.93 \times 10^3 4.93 \times 10^5$	1.29×10^{14}		302	1	[22]
1020-1320		2.75×10^{13}		289	1	[24]
1600-2200	$2.93 \times 10^4 2.93 \times 10^6$	$7.03 imes 10^{11}$		244	1	[20]
1200-1600	$3.07 - 4.27 imes 10^5$	1.26×10^{12}		264	1	[18]
1200-1600	$9.12 \times 10^4 1.89 \times 10^6$	$1.00 imes 10^{14}$		249	1	[19]
600-2200		9.44×10^{13}		294	1	[23]
973-1073	$1.01 imes 10^5$	5.2×10^{13}		295	1	This study
1150-1570	$1.52 - 2.64 \times 10^{5}$	2.16×10^{-8}		244	2	[21]
1600-2200	$2.93 \times 10^4 2.93 \times 10^6$	2.01×10^{-3}	-5.75	244	2	[20]
600-2200		1.18×10^{-5}		269	2	[23]

^a The rate coefficients of the forward reaction is $k = AT^n \exp(-E/RT)$, where A is in pre-exponential factor, E is activation energy and R is the ideal gas constant.

temperature. At temperatures above 1133 K, its formation rate exceeds that of C_2F_4 .

The pyrolysis of CHF₃ was modelled using the NIST mechanism and a comparison of experimental data and predicted reactions is shown in Fig. 2. CHF₃ conversion levels agree reasonably with NIST predictions, although the levels observed experimentally are slightly higher than those predicted. The NIST mechanism predicts C_2F_4 as the sole carbon containing product species and the predicted rate of formation is consistent with the experimental results at temperatures below 1093 K. However, it is overpredicted significantly at temperatures above 1093 K and another major product, C_3F_6 which is detected experimentally is not included as a reaction product in this mechanism. In order to improve the model's consistency with experimental data, the NIST mechanism was modified by incorporating relevant kinetic data from the open literature. Initially, the kinetics parameters (*A* factor and activation energy) of reaction (R2) was replaced by Schug

Fig. 2. Conversion of CHF₃ (a), rate of formation of C_2F_4 (b) and rate of formation of C_3F_6 (c) as a function of temperature during the pyrolysis of CHF₃.

et al.'s parameters [22] as shown in Table 1. Similarly to the conclusions by Biordi et al. [25], these rate parameters appear to be too high for the pyrolysis of CHF_3 compared with experimental results. The kinetics parameters derived from our experiments, together with other reported studies, were added to NIST mechanism to produce a modified mechanism (see Table 2).

$$CF_2 + CF_2 \colon CF_2 \to C_3F_6 \tag{R10}$$

$$CF_2 \colon CF_2 + CF_2 \colon CF_2 \to C_3F_6 + CF_2 \tag{R11}$$

$$c\text{-}C_3F_6 \rightarrow CF_2 \text{: } CF_2 + CF_2 \tag{R12}$$

$$c\text{-}C_3F_6 \rightarrow C_3F_6 \tag{R13}$$

In the CHF₃ pyrolysis mechanism, the initial reaction step involves the dehydrofluorination of CHF₃, resulting the formation of HF and CF₂ di-radical. Reactions (R3a) and (R3b) are not included in the mechanism since they are not likely to be responsible for the consumption of CHF₃ as discussed early. One clear deficiency of the existing mechanism is the absence of reaction pathways which lead to the formation of C_3F_6 , and as such reactions (R10)–(R13) are introduced and are part of the modified mechanism. C₃F₆ also can be formed via reactions (R14)–(R17), but we suggest these are not primary pathways as the A factor for the formation of C_4F_8 ((R14) and (R15)) is as low as 10^{10} cm³ mol⁻¹ s⁻¹ [27]. In addition, C₄F₈ was not detected under the conditions studied, suggesting it is not produced to a significant extent. It is noted that a high activation barrier was reported by Yu et al. [28] for the transformation of c- C_3F_6 to C_3F_6 (R13). As no *c*- C_3F_6 was detected in the present study, it seems that this reaction does not play a major role in the formation of C_3F_6 . However, with similar activation energy $(210 \text{ kJ mol}^{-1})$ and A factor (10^{15} s^{-1}) , Moon et al. found that this mechanism can predict the trends of C_3F_6 production and C_2F_4 , as well for the pyrolysis of CHF₃ at 1173 K although the formation rate of C₃F₆ is slightly over-predicted [7]. Similarly to the present study, the intermediate, almost no $c-C_3F_6$ was also detected during their work.

$$2C_2F_4 \rightarrow C_4F_8 \tag{R14}$$

$$2C_2F_4 \rightarrow c\text{-}C_4F_8 \tag{R15}$$

$$C_4F_8 \rightarrow C_3F_6 + CF_2 \tag{R16}$$

$$c\text{-}C_4F_8 \rightarrow C_3F_6 + CF_2 \tag{R17}$$

Combining the reactions presented in Table 2 with NIST dataset, results in the development of a modified pyrolysis mechanism. This mechanism subsequently served to model the reaction system, the results of which are shown in Fig. 2. The conversion of CHF₃ and C_3F_6 formation rates predicted by modified mechanism are in good agreement with the experimental values. Although the prediction of C_2F_4 formation is improved remarkably compared with NIST mechanism, a slight over-prediction remains at high reaction temperatures. Most probably, some by-products formed at high temperatures, which are not accounted for in the model, are responsible for this difference.

4.2. Reaction of CHF₃ with CH₄

Following the study of the pyrolysis of CHF₃, the investigation focused on the reaction of CHF₃ with CH₄. Our previous studies have discovered that CHF₃ can be converted to vinyl difluoride, CH₂=CF₂, through reaction with CH₄ [8,9]. In these studies, the reactions involving the formation of a major by-product, C₂F₄ and the target product, CH₂=CF₂ were explored, and conditions which maximized CH₂=CF₂ yield were assessed. To facilitate our under-

Table 2

No.	Reaction	$A (s^{-1} \text{ or } cm^3 mol^{-1} s^{-1})$	n	$E_{\rm r}~({\rm kJ}{\rm mol}^{-1})$	Ref.
	$CHF_3 + M \rightarrow CF_2 + HF + M$	3.4×10^{30}	-4.0	288.7	NIST
Replaced by					
R2	$CHF_3 \rightarrow CF_2 + HF$	5.2×10^{13}	0	295	This study
R10	$CF_2 + CF_2: CF_2 \rightarrow C_3F_6$	1.6×10^{11}	0	77	[27]
R11	$CF_2:CF_2 + CF_2:CF_2 \rightarrow C_3F_6 + CF_2$	1.0×10^{12}	0	125.5	[47]
R12	$c-C_3F_6 \rightarrow CF_2:CF_2 + CF_2$	1.8×10^{13}	0	182.0	[48]
R13	$c\text{-}C_3F_6 \mathop{\longrightarrow} C_3F_6$	$\textbf{6.8}\times 10^{14}$	0	268.8	[28]

Modified and new reaction steps considered in modelling of CHF₃ pyrolysis^a. For the purpose of brevity, reactions taken directly from NIST HFC mechanism are not shown in this table.

^a The rate coefficients of the forward reaction is $k = AT^n \exp(-E/RT)$, where A is in pre-exponential factor, E is activation energy and R is the ideal gas constant.

standing of this reaction and improve the yield of CH₂==CF₂, we attempt to elucidate the mechanism in more detail and discuss the pathways which lead to major and minor products.

4.2.1. Experimental results

The gas-phase reaction of CHF₃ with equimolar CH₄ (10% CHF₃ and 10% CH₄ with N₂ balance) was carried out in an alumina tube reactor at temperature of 873-1173 K, residence time of 0.5 s and atmospheric pressure. The major products for the reaction of CHF₃ with CH_4 are $CH_2 = CF_2$, C_2F_4 and HF. Minor products include C_3F_6 , CH₂F₂, C₂H₃F, C₂HF₃, C₂H₆, C₂H₂ and CHF₂CHF₂. Trace amounts of CF₃CH=CF₂, CH₂=CFCF₃, C₄H₂F₂, C₃H₈ and CHF=CHF were also detected by GC-MS. The conversion of CHF₃ and CH₄ as a function of temperature is shown in Fig. 3. As expected, the conversion of CH₄ and CHF₃ increases with temperature, although CH₄ conversion level is always lower than that of CHF₃ under the conditions studied. Conversion of CHF₃ commences at 973 K while CH₄ conversion was observed at higher temperatures. Fig. 4 shows the formation rate of major products, CH₂=CF₂ and C₂F₄, at various temperatures. It can be seen that once conversion of CH₄ is observed, the target product, CH₂=CF₂ is initiated and similarly to the conversion of CHF₃ and CH₄, its selectivity increases significantly with temperature. Concomitant with CH₂=CF₂ formation, C_2F_4 is also formed, although a maximum formation rate of C₂F₄ is at around 1023 K, above which its rate starts to decline rapidly. The rate of formation of minor products is presented in Fig. 5. These products follow a similar rate trend to C₂F₄, achieving the highest yield at about 1150 K, except for CH₂F₂ and C_2H_2 whose formation rates increase with temperature monotonically.

Mass balances for C, H and F elements are illustrated in Table S1. Generally, balances of higher than 95% are achieved at tempera-

Fig. 3. Conversion of CHF_3 and CH_4 as a function of temperature during the reaction of CHF_3 with CH_4 .

tures below 1093 K. With further increase of temperature to 1173 K, C, H and F balances drop to 76%, 85% and 71% respectively. After reaction, soot and a white solid deposit are observed on the inner surface of reactor and in the alkaline scrubber. We suggest that the coke and polymer (probably poly-VDF or PTFE) are responsible for the mass losses, especially at high temperatures.

Increasing the reaction residence time from 0.1 to 0.7 s, increases the rate of formation of target product, CH_2 = CF_2 from 1.5 to almost 3 mmol h⁻¹ at 1173 K as shown in Fig. S1. As the residence time increases, the rate of formation of C_2H_2 also shows significant increase under the conditions studied. Formation of other minor products, such as C_2H_3F , C_2HF_3 and C_3F_6 are affected by the change of residence time to a minor extent. It is noted that the rate of C_2F_4 formation declines significantly as the residence time increases from 0.1 to 0.7 s.

In order to improve the yield of $CH_2=CF_2$, it is important to explore the mechanism involving its formation and less desirable reaction by-products. The mechanism of CHF_3 conversion is based on the experimental results of CHF_3 pyrolysis, although the reactions involved in the activation and initial decomposition of CH_4 remain unclear, as there should be no gas-phase decomposition of CH_4 even at 1173 K.

4.2.2. Chemical modelling and mechanistic analysis

In the absence of CH₄, the conversion of CHF₃ amounts to around 15% at 1073 K as shown in Fig. 2(a). However, with the introduction of equimolar amounts of CH₄ and CHF₃, the conversion level drops slightly to 12%, which is close to conversion levels observed for CHF₃ pyrolysis. In both pyrolysis and in the presence of CH₄, the conversion of CHF₃ commences at 973 K. Clearly, the presence of CH₄ does not facilitate the conversion of CHF₃ which suggests that there is a common primary CHF₃

Fig. 4. Formation rate of major products as a function of temperature during reaction of CHF_3 with CH_4 .

Fig. 5. Formation rate of minor products as a function of temperature during reaction of CHF₃ with CH₄.

decomposition pathway for both the processes. Similar results were found for the thermal decomposition of CHF_3 in the presence of He or H₂ [29]. We conclude that CHF_3 is inert to attacks by H₂, H or CH_4 . During pyrolysis of CHF_3 and in the reaction with CH_4 , the initial reaction steps involve the decomposition of CHF_3 and subsequent formation of HF and the CF_2 radical. CH_4 is unlikely to be involved in the initial steps since no significant evidence was found for its decomposition during CH_4 pyrolysis even at 1173 K [9].

Comparison of the experimental results with model predictions is shown in Figs. 3–5, including the conversion and rate of formation of major and minor products. As illustrated in Fig. 3, although the GRI-NIST model can predict the conversion of CH_4 and CHF_3 very well, it was found that there are problems associated with the rate constants of the reactions involved in CH_4 activation [8]. In the GRI-NIST mechanism, reaction pathway analysis identifies the reverse reaction of (R18) and (R20) and forward reaction (R19) as these responsible for CH₄ activation.

$$CF_3 + CHF_2 \rightarrow CF_2 + CHF_3 \tag{R18}$$

$$CF_3 + CH_4 \rightarrow CH_3 + CHF_3$$
 (R19)

$$CH_3 + CHF_2 \rightarrow CH_4 + CF_2 \tag{R20}$$

In contrast, Yu et al. suggests that these reactions are not likely to be responsible for CH₄ activation, since the *A* factor of 8×10^{14} cm³ mol⁻¹ s⁻¹ is considered to be too high for the reverse reaction of (R18) [8]. In fact, the singlet CF₂ is very non-reactive since the closed-shell singlet CF₂ (¹A₁) is strongly stabilized by ppback donation [30]. However, the metastable triplet CF₂ (³B₁), having a rather long lifetime of about 1 s, is believed to be much more reactive and an *A* factor of 1.2×10^{13} cm³ mol⁻¹ s⁻¹ was estimated for the reaction with CH₄ [31]. Because the triplet lies 238.1 kJ mol⁻¹ above the ground-state singlet, the ratio of triplet to singlet ground-state populations is only 8×10^{-11} , hence the reactions of the triplet can be neglected [8].

By means of *ab initio* calculations, we failed to locate a transition structure for the reverse reaction (R20). Instead, it was found that CF₂ can insert into C–H via reaction (R21) with activation energy of 163 kJ/mol. The exponential factor was estimated to be 1.5×10^{11} cm³ mol⁻¹ s⁻¹.

$$CF_2 + CH_4 \rightarrow CH_3CF_2H$$
 (R21)

$$CH_3CF_2H \rightarrow CHF_2 + CH_3$$
 (R22)

With even higher activation energy (401 kJ mol⁻¹), CH₃CF₂H can further produce CH₃ and CHF₂ radicals through reaction (R22). The exponential factor of this reaction is around 1×10^{17} cm³ mol⁻¹ s⁻¹ based on the analogous decomposition reaction of C₂H₆.

$$CH_3 + CF_2 \rightarrow CH_2 = CF_2 + H \tag{R23}$$

Once CH₃ is formed, the major product, CH₂==CF₂ can be produced via reaction (R23) with CF₂, which is derived from the elimination of HF from CHF₃. This reaction has been studied using quantum chemical theory and it is found that this reaction leads to the formation of CH₂==CF₂ with an activation energy of almost zero [32]. With this discussion in mind, new reaction steps including (R21)–(R23) were introduced into the GRI-NIST mechanism, replacing (R18)–(R20). However, modelling results show that this new mechanism does not correctly predict the conversion of CH₄. Apparently, reactions (R21) and (R22) are not the primary pathways responsible for the activation of CH₄ and formation CH₃ because of their high-energy barriers. There must be other reactions playing a major role in the activation of CH₄.

It was speculated that there are reactions occurring on the surface of the reactor (α -Al₂O₃) and CH₄ activation takes place as a consequence of surface reactions [8]. In order to model the reaction system, a reaction step (R24) was included to mimic the surface reaction while CH₄ was thought to be activated by surface fluorine radicals. However, this hypothesis seems to conflict with experimental results when it was found that after packing Al₂O₃ or AlF₃ chips into the reactor, no enhanced conversion of CH₄ was observed. Furthermore, if this reaction takes place to a significant extent, the formation of CF₄ and C₂F₆ via reactions (R7), (R25) and (R26) during pyrolysis of CHF₃ is expected. However, even trace amounts of CF₄ and C₂F₆ were not detected in the present study. In addition, for the reaction of CH₅ with CH₄, CH₃F will be the key intermediate which is also absent from the product profile.

$$CF_3 + CF_3 \rightarrow C_2F_6$$
 (R7)

$$CF_2 \rightarrow C + F + F$$
 (R24)

$$CF_2 + F \rightarrow CF_3$$
 (R25)

$$CF_3 + F \rightarrow CF_4$$
 (R26)

In the previous [8] and present studies, trace amounts of H_2 were detected, although accurate determination of the amount of H_2 produced was not possible with the present analysis train. Excluding H_2 , over 95% of hydrogen is balanced, which supports the assertion that the rate of formation of H_2 is low. However, it has been suggested that a relatively low concentration of H may lead to the activation of CH_4 via a series of chain reactions ((R27)–(R31)) [33]. Initiation:

$$CH_{4(s)} \to CH_3 + H \tag{R27}$$

Propagation:

$$H + CH_4 \rightarrow CH_3 + H_2 \tag{R28}$$

$$CH_4 + CH_3 \rightarrow C_2H_6 + H \tag{R29}$$

$$CH_3 + C_2H_6 \rightarrow C_2H_5 + H \tag{R30}$$

$$C_2H_5 \rightarrow C_2H_4 + H \tag{R31}$$

To examine this hypothesis, the pyrolysis of CH₄ was investigated both experimentally and computationally. The results are shown in Table 3, together with the modelling results based on the existing GRI mechanism. Indeed, the conversion of CH₄ and subsequent formation of C₂H₆, although low, was observed with our alumina reactor. The existing GRI mechanism was used to model this reaction. Virtually no reaction was predicted under any of the conditions studied. This suggests that a small amount of CH₄ may be activated on the surface of reactor, at least at high temperatures. During the reaction of CH₄ with CHF₃, as a result of the production of HF, the reactor surface is likely to be fluorinated [34]. Hence, 0.2 g AlF_3 (having a bulk volume of 0.35 cm³ and a surface area of 480 cm²) was packed into the reactor to simulate this fluorinated reactor surface. As shown in Table 3, AlF₃ enhances the rate of decomposition of CH₄ significantly. Consistent with these observations, it has been noted that methane can be activated, or its conversion can be improved, in the presence of Brønsted and/or Lewis acid sites [35–38]. AlF₃ is considered a strong solid Lewis acid [39] and it may initiate chain reactions ((R27)-(R31)). Although CH₄ is stable even at 1173 K, low conversion levels still can be achieved on the surface of reactor. Based on these results, we introduce into the existing mechanisms a simplified reaction step (R27) to simulate these surface reactions. Numerous results have been reported for the kinetics of gas-phase reaction of (R27) [40,41], for which the estimated activation energy varies from 270 to 490 kJ mol⁻¹. Based on the observed effect of surface reaction on methane activation, an activation energy of 270 kJ mol⁻¹ appears to be too high. Improved agreement with experimental data can be obtained by decreasing the activation energy and exponential factor to 234 kJ mol⁻¹ and 1.09×10^{10} s⁻¹. After introducing this reaction into GRI mechanism, closer prediction can be obtained compared with experimental results as shown in Table 3.

Combining the other reaction steps outlined in Table 4 with the GRI-NIST mechanism, we introduce our new modified reaction

Table 3

Experimental and modelling results of pyrolysis of CH₄ as a function of temperature in an alumina tube reactor^a.

T (K)	C) CH ₄ Pyrolysis		GRI-Mech Prediction		Modified model		CH ₄ Pyrolysis over AlF ₃ ^b		
	Conversion (%)	C_2H_6 (mmol h ⁻¹)	Conversion (%)	C_2H_6 (mmol h ⁻¹)	Conversion (%)	C_2H_6 (mmol h ⁻¹)	Conversion (%)	C_2H_6 (mmol h ⁻¹)	C_2H_4 (mmol h ⁻¹)
973	0.049	0	0.002		0.002	0.00014	0.11	0.0036	0
1023	0.024	0.0026	0.004	$9 imes 10^{-7}$	0.018	0.0016	0.26	0.0061	0
1073	0.018	0.0018	0.008	8.6×10^{-6}	0.098	0.009	0.68	0.01	0.002
1123	0.14	0.004	0.02	$7 imes 10^{-5}$	0.46	0.04	0.37	0.011	0.005
1173	0.31	0.013	0.04	0.0005	0.83	0.011	1.1	0.027	0.009

^a At pressure of 1.01 bar and residence of 0.5 s.

^b During experiment, 0.2 g AlF₃ was packed into the reactor. Other reaction conditions remained unchanged.

Table 4

Modified and new reaction steps considered in modelling of reaction of CHF₃ with CH₄^a. For the purpose of brevity, reactions taken directly from NIST HFC mechanism are not shown in this table.

No.	Reaction	$A (s^{-1} \text{ or } cm^3 mol^{-1} s^{-1})$	n	E (kJ mol ⁻¹)	Ref.
	$CHF_3 + M \to CF_2 + HF + M$	3.4×10^{30}	-4.0	288.7	NIST
Replaced by					
R2	$CHF_3 \rightarrow CF_2 + HF$	5.2×10^{13}	0	295	This study
R10	$CF_2 + CF_2: CF_2 \rightarrow C_3F_6$	$1.6 imes 10^{11}$	0	77	[27]
R11	$CF_2:CF_2+CF_2:CF_2\rightarrow C_3F_6+CF_2$	$1.0 imes 10^{12}$	0	125.5	[47]
R12	$c-C_3F_6 \rightarrow CF_2:CF_2+CF_2$	1.8×10^{13}	0	182.0	[48]
R13	$c-C_3F_6 \rightarrow C_3F_6$	$6.8 imes 10^{14}$	0	268.8	[28]
R20	$CHF_2 + CH_3 \rightarrow CF_2 + CH_4$	3.0×10^{13}	0	3.4	
Replaced by					
-R20	$CH_4 + CF_2 \rightarrow CH_3 + CHF_2$	1.0×10^{13}	0	159.5	[8]
R21	$CH_4 + CF_2 \rightarrow CH_3CF_2H$	$1.5 imes 10^{11}$	0	163	This study
R22	$CH_3CF_2H \rightarrow CH_3 + CHF_2$	1.0×10^{17}	0	401	This study
R23	$CH_3 + CF_2 \rightarrow CH_2 CF_2 + H$	6.0×10^{12}	0	14.6	-
Change to					
0		2.1×10^{13}	-0.2	0	[32]
R27	$CH_4 \rightarrow H + CH_3$	1.09×10^{10}	0	234	This study
R34	$CHF_2 + CF_2 \rightarrow CF_2 : CF_2 + H$	2.0×10^{12}	0	14.6	
Replaced by					
-R34	$CF_2: CF_2 + H \longrightarrow CHF_2 + CF_2$	8.4×10^8	1.5	19.2	This study

^a The rate coefficients of the forward reaction is $k = AT^{n} \exp(-E/RT)$, where A is in pre-exponential factor, E is activation energy and R is the ideal gas constant.

mechanism. The reaction parameter for CHF₃ decomposition is obtained from our pyrolysis study. Relatively good agreement between model predictions and experimental results are achieved, as shown in Figs. 3–5, although among the products, C_2HF_3 and C_3F_6 are significantly over-predicted by the modelling. We suggest this is due to the absence of reactions steps which lead to the decomposition of these two species. For example, significant amounts of soot were observed during the experiments, while only trace amounts of carbon were predicted from modelling.

With this modified mechanism, sensitivity analysis for the concentration of CH_3 was performed and the results are shown in Fig. 6. Sensitivity analysis is often used to describe the dependence of rate of formation of a certain species on the reactions involved in the mechanism. By comparing sensitivity coefficients, the rate-determining and other most important reactions for formation of different species can be identified and analyzed quantitatively. A more detailed example can be seen in Reference [42].

Clearly, the sensitivity analysis further confirms our suggestion of the major pathways for activation of CH₄. Although almost no CH₄ conversion was observed without reaction (R27), sensitivity of this reaction to CH_3 concentration is extremely low. This indicates that the primary role for reaction (R27) is that it acts as an initiator for the conversion of CH_4 .

Initiation:

$$CH_{4(s)} \rightarrow CH_3 + H \cdot$$
 (R27)

Propagation:

 $H + CF_2: CF_2 \rightarrow CHF_2CF_2 \tag{R32}$

 $H + CF_2: CF_2 \rightarrow CHFCF_2 + F \tag{R33}$

$$CHF_2 + CF_2 \rightarrow H + CF_2: CF_2 \tag{R34}$$

$$CHF_2CF_2 + CH_4 \rightarrow CHF_2CHF_2 + CH_3$$
(R35)

$$F + CH_4 \rightarrow CH_3 + HF \tag{R36}$$

$$H + CH_4 \rightarrow CH_3 + H_2 \tag{R37}$$

$$CH_3 + CF_2 \rightarrow CH_2 = CF_2 + H \tag{R23}$$

Fig. 6. Sensitivity analysis of reactions to the concentration of CH₃ radical at temperature 1113 K, pressure of 1.01 bar and residence time of 0.5 s.

As shown in Fig. 6, CH_3 consumption is dominated by reaction (R23), forming the target product, CH_2 = CF_2 . In reaction (R23), CF_2 is formed via reaction (R2) which is the major channel for the decomposition of CHF_3 (see Fig. S2).

For the NIST-GRI mechanism, the major reaction step leading to the formation of C_2HF_3 involves the coupling of CHF_2 and CF_2 via reaction (R38). Although no literature references for this reaction have been found, kinetic data in the NIST-GRI mechanism is consistent with the results of similar reactions, which have been investigated both experimentally and computationally [43]. We suggest that the final estimation of the concentration of C_2HF_3 is over-predicted because of the relatively high concentration of CHF₂ predicted in the model.

$$CHF_2 + CF_2 \rightarrow CHF : CF_2 + F \tag{R38}$$

Reaction pathway analysis indicates that the main pathway to CHF₂ formation is via the reverse reaction of (R34). Its secondorder rate constant is estimated to be greater than 6×10^{-8} cm³ mol⁻¹ s⁻¹ at 1093 K, based on the modelling data, although much lower values were reported [44–46] for this reaction based on the experimental observation. To improve the prediction of C₂HF₃, (R34) was replaced by (–R34) in the modified mechanism. The activation energy is assumed to be 19 kJ mol⁻¹, which is equal to the standard enthalpy changes of (–R34), which is lower than the activation energy barrier.

There are a number of uncertainties in elucidating the pathways for formation of C_3F_6 , which is generally thought to be formed via reaction of C_2F_4 with CF_2 [27,28]. The reaction between CF_2 and C_2F_4 was studied using the *meta* hybrid density functional theory method of BB1K, which showed that the addition of CF_2 to C_2F_4 invariably leads to the formation of $c-C_3F_6$, although no transition state leading directly to C_3F_6 was found [28]. In the present experiments, no $c-C_3F_6$ was detected, which suggests the NIST-GRI mechanism may not include all pathways leading to the formation of C_3F_6 . As a consequence, significant discrepancies were found between the prediction and experimental results of C_3F_6 . In order to model the formation of C_3F_6 , reactions (R10)–(R14) are included in the modified mechanism, which result in reasonable agreement with experiments during the pyrolysis of CHF₃.

Based on the suggested mechanism, major channels to other products can be obtained.

Channel to C_2H_6 :

$$2CH_3 \rightarrow C_2H_6$$
 (R39)

Channels to CH₂F₂:

 $CHF_2 + CH_4 \rightarrow CH_2F_2 + CH_3 \tag{R40}$

$$CHF_3 + CHF_2 \rightarrow CH_2F_2 + CF_3 \tag{R41}$$

$$2CHF_2 \rightarrow CH_2F_2 + CF_2 \tag{R42}$$

 $CH_4 + CF_2 \rightarrow CH_2 : CHF + HF \tag{R43}$

$$CH_4 + CF \rightarrow CH_2: CHF + H$$
 (R44)

$$CH_3 + CHF_2 \rightarrow CH_2: CHF + HF$$
 (R45)

 $CH_2 = CF_2 + H \rightarrow CH_2: CHF + F$ (R46)

Channels for CHF₂CHF₂:

 $2CHF_2 \rightarrow CHF_2CHF_2$ (R47)

 $CHF_2CF_2 + H \rightarrow CHF_2CHF_2 \tag{R48}$

 $CHF_2CF_2 + CH_4 \rightarrow CHF_2CHF_2 + CH_3 \tag{R35}$

5. Conclusions

The pyrolysis of CHF₃ and reaction of CHF₃ with CH₄ have been investigated experimentally and computationally. It was found that CHF₃ pyrolysis commences around at 973 K at residence time of 0.5 s, and its conversion increases with temperature. The products identified by GC–MS include C_2F_4 , C_3F_6 and trace amounts of C_2HF_3 . The overall rate of CHF₃ decomposition can be expressed as $5.2 \times 1013 \, [s^{-1}] \, e^{-295[k] \, mol^{-1}]/RT}$. The NIST mechanism predicts C_2F_4 as the only carbon containing species, with its formation rate over-predicted significantly at temperatures above 1093 K. Another major reaction product, C_3F_6 is not included in the mechanism. A modified mechanism was developed which can reproduce experimental data reasonably well.

For the reaction of CHF₃ with CH₄, the major products are $CH_2 = CF_2$, C_2F_4 and HF. Minor products include C_3F_6 , CH_2F_2 , C₂H₃F, C₂HF₃, C₂H₆, C₂H₂ and CHF₂CHF₂. Trace amounts of CF₃CH=CF₂, CH₂=CFCF₃, C₄H₂F₂, C₃H₈ and CHF=CHF were also detected by GC-MS. Predictions based on the GRI-NIST mechanism show good agreement between experiments and modelling for the conversion of CHF₃ and CH₄, but significant discrepancies were observed for the selectivity of some reaction products. Modifications to the existing GRI-NIST mechanism are suggested and when incorporated in the model, significantly improve agreement between experiments and modelling. Based on mechanistic pathway analysis, the initial step in the decomposition of CHF₃ includes the formation of CF₂ radical and HF. This reaction dominates the pyrolysis of CHF₃ and reaction of CHF₃ with CH₄. Trace amounts of CH₄ decompose on the surface of reactor, producing H radical. It is proposed that CH₄ is activated by a series of chain reactions which are initiated by this small amount of H radicals.

Acknowledgements

The Australian Research Council is gratefully acknowledged for financial support for this project. W.H. is indebted to the Department of Education, Science and Training (DEST) of the Australian Government and the University of Newcastle, Australia for postgraduate scholarships.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.jfluchem.2010.03.012.

References

- [1] Production and Consumption of Ozone Depleting Substances Under the Montreal Protocol, UNEP, 2008 Available at http://ozone.unep.org/Data_Reporting/Data_Access/.
- [2] D.W.F. Cuus, J.M. Velders, J.S. Daniel, M. McFarland, S.O. Andersen, Proc. Nat. Acad. Sci. 106 (2009) 10949–10954.
- [3] D.E. Oram, W.T. Sturges, S.A. Penkett, A. McCulloch, P.J. Fraser, Geophys. Res. Lett. 25 (1998) 35–38.
- [4] AM0001: Incineration of HFC 23 Waste Streams, UNFCCC, 2006 http://cdm.unfccc. int/methodologies/index.html.
- [5] W.B. Feaver, J.A. Rossin, Catal. Today 54 (1999) 13-22.
- [6] H. Onoda, T. Ohta, J. Tamaki, K. Kojima, Appl. Catal. A 288 (2005) 98-103.
- [7] D.J. Moon, M.J. Chung, H. Kim, Y.S. Kwon, B.S. Ahn, Ind. Eng. Chem. Res. 41 (2002) 2895–2902.
- [8] H. Yu, E.M. Kennedy, J.C. Mackie, B.Z. Dlugogorski, Environ. Sci. Technol. 40 (2006) 5778–5785.
- [9] W.F. Han, H. Yu, E.M. Kennedy, J.C. Mackie, B.Z. Dlugogorski, Environ. Sci. Technol. 42 (2008) 5795–5799.
- [10] A.L. Moore, Fluoroelastomers Handbook: the Definitive User's Guide and Databook, William Andrew Publishing, Norwich, 2005.
 [11] M. Visca, M.S. Kelly, B.L. Kent, EP 1679352 (2007).
- [12] H. Yu, E.M. Kennedy, M.A. Uddin, A.A. Adesina, B.Z. Dlugogorski, Catal. Today 97 (2004) 205–215.

- [13] K. Li, E.M. Kennedy, B.Z. Dlugogorski, Ind. Eng. Chem. Res 38 (1999) 3345-3352.
- [14] M.J. Height, E.M. Kennedy, B.Z. Dlugogorski, J. Chromatogr. A 841 (1999) 187-195.
- [15] Softpredict, Cosilab Collection, Version 2.1.0 ed., Rolexo-Softpredict-Cosilab GmbH & Co KG, Bad Zwischenahn, Germany, 2007, www.Softpredict.com.
- [16] A. Manion, R.E. Huie, R.D. Levin, D.R. Burgess Jr., V.L. Orkin, W. Tsang, W.S. McGivern, J.W. Hudgens, V.D. Knyazev, D.B. Atkinson, E. Chai, A.M. Tereza, C.-Y. Lin, T.C. Allison, W.G. Mallard, F. Westley, J.T. Herron, R.F. Hampson, D.H. Frizzell, NIST Chemical Kinetics Database, NIST Standard Reference Database 17, Version 7.0 (Web Version) Release 1.4.3, Data Version 2008.12, National Institute of Standards and Technology, Gaithersburg, MD, 2008, http://kinetics.nist.gov/.
- [17] G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C.T. Bowman, R.K. Hanson, S. Song, W.C. Gardiner, V.V. Lissianski Jr., Z. Qin, GRI-Mech 3.0, 2008 http://www.me.berkeley.edu/gri_mech/.
- [18] E. Tschuikow-Roux, J.E. Marte, J. Chem. Phys. 42 (1965) 2049-2056.
- [19] E. Tschuikow-Roux, J. Chem. Phys. 42 (1965) 3639-3642.
- [20] A.P. Modica, J.E. LaGraff, J. Chem. Phys. 44 (1966) 3375-3379.
- [21] Y. Hidaka, T. Nakamura, H. Kawano, Chem. Phys. Lett. 187 (1991) 40-44.
- [22] K.P. Schug, H.G. Wagner, F. Zabel, Ber. Bunsen-Ges. Phys. Chem. 83 (1979) 167– 175.
- [23] D.W. Placzek, B.S. Rabinovitch, G.Z. Whitten, E. Tschuikow-Roux, J. Chem. Phys. 43 (1965) 4071–4080.
- [24] S.F. Politanskii, V.U. Shevchuk, Kinet. Catal. 9 (1968) 496-503.
- [25] J.C. Biordi, C.P. Lazzara, J.F. Papp, J. Phys. Chem. 82 (1978) 125-132.
- [26] F. Battin-Leclerc, A.P. Smith, G.D. Hayman, T.P. Murrells, J. Chem. Soc. Faraday Trans. 92 (1996) 3305–3313.
- [27] N.N. Buravtsev, A.S. Grigor'ev, Y.A. Kolbanovskii, Kinet. Catal. 30 (1989) 21–30.
 [28] H. Yu, E.M. Kennedy, W.H. Ong, J.C. Mackie, W. Han, B.Z. Dlugogorski, Ind. Eng. Chem. Res. 47 (2008) 2579–2584.

- [29] R. Romelaer, V. Kruger, J.M. Baker, W.R. Dolbier, J. Am. Chem. Soc. 123 (2001) 6767–6772.
- [30] S. Koda, J. Phys. Chem. 83 (1979) 2065-2073.
- [31] X.J. Hou, T.L. Nguyen, S.A. Carl, J. Peeters, M.T. Nguyen, Chem. Phys. Lett. 402 (2005) 460–467.
- [32] H. Yu, J.C. Mackie, E.M. Kennedy, B.Z. Dlugogorski, Ind. Eng. Chem. Res. 45 (2006) 3758–3762.
- [33] C.H. Bamford, C.F.H. Tipper, in: C.F.H.T.C.H. Bamford (Ed.), Decomposition and Isomerisation of Organic Compounds, Elsevier, Amsterdam, 1972, pp. 36–64.
- [34] M. Bankhead, G.W. Watson, G.J. Hutchings, J. Scott, D.J. Willock, Appl. Catal. A 200 (2000) 263–274.
- [35] T. Jin, T. Yamaguchi, K. Tanabe, J. Phys. Chem. 90 (2002) 4794–4796.
- [36] W. Hua, A. Goeppert, J. Sommer, Appl. Catal. A 219 (2001) 201–207.
 [37] F.T.T. Ng, C.R. Rourke, J. Lynn, J.S. Kevin, E.C. Sanford, Studies in Surface Science and Catalysis, Elsevier, 1992, pp. 91–97.
- [38] F.R. Chen, G. Coudurier, J.F. Joly, J.C. Vedrine, J. Catal. 143 (1993) 616-626.
- [39] G. Eltanany, S. Rudiger, E. Kemnitz, J. Mater. Chem. 18 (2008) 2268–2275.
- [40] W.C. Gardiner Jr., J.H. Owen, T.C. Clark, J.E. Dove, S.H. Bauer, J.A. Miller, W.J. McLean, Symp. (Int.) Combust. 15 (1975) 857–868.
- [41] J.H. Kiefer, S.S. Kumaran, J. Phys. Chem. 97 (1993) 414-420.
- [42] M. Forsth, Combust. Flame 130 (2002) 241–260.
- [43] Y. Saso, D.L. Zhu, H. Wang, C.K. Law, N. Saito, Combust. Flame 114 (1998) 457-468.
- [44] K. Sugawara, K. Okasaki, S. Sato, Bull. Chem. Soc. Jpn. 54 (1981) 358–361.
- [45] E.B. Gordon, B.I. Ivanov, A.P. Perminov, V.E. Balalaev, Chem. Phys. 35 (1978) 79– 89
- [46] J.P. Kilcoyne, K.R. Jennings, J. Chem. Soc., Faraday Trans. 1 (70) (1974) 379-390.
- [47] B. Atkinson, V.A. Atkinson, J. Chem. Soc. (1957) 2086–2094.
- [48] S.H. Bauer, S. Javanovic, Int. J. Chem. Kinet. 30 (1998) 171–177.